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Most of the existing point-to-mesh distance query solvers, such as Proxim-
ity Query Package (PQP), Embree and Fast Closest Point Query (FCPW),
are based on bounding volume hierarchy (BVH). The hierarchical organiza-
tional structure enables one to eliminate the vast majority of triangles that
do not help find the closest point. In this paper, we develop a totally differ-
ent algorithmic paradigm, named P2M, to speed up point-to-mesh distance
queries. Our original intention is to precompute a KD tree (KDT) of mesh
vertices to approximately encode the geometry of amesh surface containing
vertices, edges and faces. However, it is very likely that the closest primitive
to the query point is an edge 𝑒 (resp., a face 𝑓 ), but the KDT reports a mesh
vertex 𝑣 instead. We call 𝑣 an interceptor of 𝑒 (resp., 𝑓 ). The main contribu-
tion of this paper is to invent a simple yet effective interception inspection
rule and an efficient flooding interception inspection algorithm for quickly
finding out all the interception pairs. Once the KDT and the interception
table are precomputed, the query stage proceeds by first searching the KDT
and then looking up the interception table to retrieve the closest geometric
primitive. Statistics show that our query algorithm runs many times faster
than the state-of-the-art solvers.
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1 INTRODUCTION
Given a mesh surface, fast query of the closest geometric primitive
(vertex, edge, or face) to the user-specified point, as well as the clos-
est point and the minimum distance, is a fundamental operation in
a wide range of research fields [Abbasifard et al. 2014; Auer and
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Fig. 1. Given a query point 𝑞, our query operation begins with searching
the KDT of mesh vertices. Let 𝑣𝑖 be the nearest vertex to 𝑞, reported by
the KDT. After that, one needs to further look up 𝑣𝑖 ’s interception list and
finally identify the geometric primitive (an edge or a face) that contains the
real closest point 𝑞′.

Westermann 2013; Guezlec 2001; Wald et al. 2019] including com-
puter graphics, physical simulation, computational geometry and
computer-aided design.

Bounding volume hierarchy (BVH) [Haverkort 2004] is a com-
monly used data structure to encode the hierarchical inter-primitive
spatial proximity. Once BVH is constructed in the preprocessing
stage, it greatly expedites the query by quickly eliminating those
triangles that do not help determine the minimum distance. CGAL
[CGAL 2022] includes anAABB-based point-to-mesh distance query
function. Amuch faster BVH-based implementation [Liu andWang
2010; Wang and Chen 2013] is based on the proximity query pack-
age (PQP) [Larsen et al. 1999], which uses oriented bounding boxes
(OBBs) as the basic bounding volume type. There are some accel-
erated versions such as FCPW [Sawhney 2021] and Embree [Áfra
et al. 2016], but they do not really bring down the query cost.
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In this paper, we intend to use the KD tree (KDT), built from the
vertex set 𝑉 = {𝑣𝑖 }𝑛𝑖=1, to help identify the real geometric primi-
tive that defines the minimum distance. When users input a query
point 𝑞 whose nearest point is found to be 𝑣𝑖 by KDT search, we
hope that the vertex 𝑣𝑖 is able to keep enough clues to help find the
real closest point 𝑞′. Suppose that the mesh edge 𝑒 (resp., face 𝑓 )
is the geometric primitive containing 𝑞′. We say that 𝑣𝑖 intercepts 𝑒
(resp., 𝑓 ). The main task of this paper is to precompute the intercep-
tion table, with which the query stage proceeds by first searching
the KDT and then looking up the table to report the real closest
point; See Figure 1.

Let 𝑉 , 𝐸, 𝐹 be respectively the vertex set, the edge set and the
face set of a triangle mesh. Mathematically we take each vertex
as a point with no dimension, each edge as an open line segment
with no width, and each face as a bounded open region with no
thickness. Just as the vertex set can define a Voronoi diagram V𝑉
in 3D, the geometric primitives in 𝑉 , 𝐸, 𝐹 can altogether define a
generalized Voronoi diagram V𝑉 ,𝐸,𝐹 , following the above defini-
tion. Let Cell(𝑣 ;V𝑉 ) be 𝑣 ’s cell in V𝑉 , and Cell(𝑒;V𝑉 ,𝐸,𝐹 ) be 𝑒’s
cell in V𝑉 ,𝐸,𝐹 . We observe that 𝑣 intercepts 𝑒 (resp., 𝑓 ) if and only
if the intersection between Cell(𝑣 ;V𝑉 ) and Cell(𝑒;V𝑉 ,𝐸,𝐹 ) (resp.,
Cell(𝑓 ;V𝑉 ,𝐸,𝐹 )) is not empty.
Based on this observation, we give two techniques for fast inter-

ception inspection. First, we relax the intersection domain (possi-
bly non-convex) into a convex polytope and give an effective fil-
tering rule for fast interception inspection. Second, we suggest a
flooding procedure of interception inspection to avoid exhausting
all the vertex-edge and vertex-face pairs. The couple of techniques,
simple yet effective, enables one to precompute the interception
table in a short period of time, e.g., about two minutes for a 1500K-
face Dragon model. Note that the timing cost for accomplishing
the same preprocessing task in a brute-force manner is more than
one day! We conduct extensive experiments to compare our algo-
rithm with the BVH-based point-to-mesh distance query solvers.
Experimental results show that our query, with the support of the
interception table, is many times faster than the SOTA methods.

2 RELATED WORK
Two topics are related to the theme of this paper, including nearest
neighbor (NN) search and BVH.

2.1 Nearest neighbor search
Given a set of points in the 𝑘-dimensional space, NN search algo-
rithms aim to find the one that is nearest to the user-specified input
point 𝑞. The search operation can be done efficiently by organizing
the points into a tree such that large portions of the search space
can be eliminated in the query stage. Most NN search algorithms
include a tree construction stage and a tree-based query stage.

KDT. Suppose that we have 𝑁 𝑘-dimensional points 𝑃 = {𝑝𝑖 }𝑁𝑖=1,
and each point of 𝑃 has a form of (𝑥1, 𝑥2, · · · , 𝑥𝑘 ). We first find
the median point 𝑝𝑖 to divide the other 𝑁 − 1 points along the first
dimension.The following process can be conducted in a divide-and-
conquer fashion except that the division of points is done for differ-
ent dimensions alternatively. The construction is finished when all
the 𝑁 points are arranged in the tree. In fact, each non-leaf node

defines an axis-aligned hyperplane to split the space of interest into
two parts.

In the query stage, the algorithmmoves down the tree depending
on the relative position of the query point to the splitting hyper-
plane. Once reaching a leaf node, the algorithm updates the best-
so-far distance. Then it needs to unwind the recursion of the tree
and update the current best if there is another node that gives a
smaller distance. Besides the task of querying the nearest point, the
KDT can also be extended in several ways, e.g., searching 𝑘-nearest
neighbors or retrieving points in a given hyperbox or hypersphere.

Other NN search data structures. In fact, there are many other
data structures [Li et al. 2019] devised for NN search, for example,
R-tree [Beckmann et al. 1990; Berchtold et al. 1996; Guttman 1984;
Kamel and Faloutsos 1993], ball-tree [Liu et al. 2006], A-tree [Saku-
rai et al. 2000], BD-tree [White and Jain 1996], SR-tree [Katayama
and Satoh 1997] andVoronoi diagrams. AlthoughVoronoi diagrams
encode the proximity between points more precisely, the construc-
tion/search of Voronoi diagram is not easy [Devroye et al. 2004;
Sharifzadeh and Shahabi 2010] especially with the increase of point
dimensions. Furthermore, the operation of locating a point in a
Voronoi diagram is less efficient than the KDT.

2.2 Bounding volume hierarchy
Like the KDT, a BVH [Haverkort 2004] is a hierarchical structure
to encode a set of geometric primitives. Each leaf node wraps a sin-
gle geometric primitive while each non-leaf node keeps the enclos-
ing bounding volume of a subset of geometric primitives. The BVH
can be built in a top-down, bottom-up, or incremental insertion-
based style, ultimately producing a tree with a bounding volume
at the top. BVH has been widely used in distance query [Ytterlid
and Shellshear 2015], ray tracing [Meister et al. 2021] and collision
detection [Funfzig et al. 2006; Wang and Cao 2021].

Bounding volume types. In the past research, various types of
bounding volumes have been proposed and tested. The choice of
bounding volume is a trade-off between simplicity and tightness.
On one hand, a simple bounding volume enables fast intersection
tests and distance computation. On the other hand, the bounding
volume is expected to fit the enclosed geometric primitives as tight
as possible. Commonly used bounding volumes includeAABB [Beck-
mann et al. 1990; Larsson andAkenine-Möller 2006], bounding sphere
[Hubbard 1995; Kavan and Žára 2005; Palmer and Grimsdale 1995],
OBB [Gottschalk et al. 1996] and K-DOP [Klosowski et al. 1998].
More bounding structures include zonotope [Guibas et al. 2003], pie
slice [Barequet et al. 1996], ellipsoid [Liu et al. 2007], VADOP [Com-
ing and Staadt 2007] and convex hull [Ehmann and Lin 2001].

PQP. Considering that the typical discrete representation of a 3D
object is a triangle mesh or a triangle soup, the task of encoding the
spatial proximity is to arrange a collection of triangles into a BVH.
The PQP [Larsen et al. 1999], as well as the modified version [Liu
and Wang 2010; Wang and Chen 2013], exploits OBBs to wrap geo-
metric primitives, facilitating fast distance query. Statistics show
that PQP filters out the vast majority of triangles that do not help
determine the minimum distance.
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(a) (b) (c) (d)

Fig. 2. Insight about the interception table. (a) The Voronoi diagram
w.r.t. three segments 𝑒1, 𝑒2, 𝑒3. (b) The Voronoi diagram w.r.t. two points
𝑣1, 𝑣2. (c) Overlay visualisation of the two Voronoi diagrams. (d) Intercep-
tion table. Intuitively speaking, the interception table encodes the principal-
agent relationship between a set of points and a set of more complicated
geometric primitives.

BVH acceleration techniques. Besides some works that focus on
improving the quality of bounding volumes, there are some accel-
erated versions such as FCPW [Sawhney 2021] and Embree [Áfra
et al. 2016]. For example, FCPWapplies awide BVHwith vectorized
traversal to accelerate its queries to geometric primitives [Sawhney
2021]. While both SIMD [Ruipu et al. 2010] and GPGPU [Tang et al.
2011] have been used to improve the performance, the required
computational amount is not really reduced.

3 INSIGHT
In this section, we provide the insight based on the 2D setting, but it
is worth noting that the proposed algorithm in this paper is mainly
devised for the 3D situation.
If the given geometric objects consist of finitely many discrete

2D points𝑉 = {𝑣𝑖 }𝑛𝑖=1, there are some tree-type structures (like the
KDT) to organize them to facilitate fast query of the nearest point.
In fact, the point set 𝑉 determines a 2D Voronoi diagram V𝑉 that
partitions the 2D plane into 𝑛 cells. The task of finding the nearest
point to the query point 𝑞 with the help of a KDT is equivalent to
the task of locating 𝑞 inV𝑉 .

In our scenario, however, the geometric objects may be more
complicated. As Figure 2(a) shows, we have three line segments
𝐸 = {𝑒1, 𝑒2, 𝑒3}. We need to report which line segment can provide
the smallest distance for a query point 𝑞 in the 2D plane. Similarly,
𝐸 also induces a Voronoi diagramV𝐸 where different Voronoi cells
are visualized in different colors. The task of querying the closest
point to 𝑞 in 𝐸, in its nature, is to locate the query point inV𝐸 .
The Voronoi diagram w.r.t. non-point geometric primitives has

curved bisectors, which are non-trivial to compute. Furthermore,
even if the generalized Voronoi diagram has been computed, it is
hard for one to quickly locate the query point. This motivates us
to convert the point-to-mesh distance query problem to the tradi-
tional nearest point search problemwhere the geometric primitives
consist of finitely many points. As Figure 2(b) shows, we sample
two points 𝑉 = {𝑣1, 𝑣2} in the 2D plane. The Voronoi diagram V𝑉
is simply a straight-line bisector. Note that 𝑉 is not directly tied
to 𝐸 in this example although 𝑉 can be chosen to be a subset of 𝐸
in practice.
The key idea of this paper is to speed up the process of finding

the closest geometric primitive in 𝐸 with the help of a KDT of 𝑉 .
Figure 2(c) gives an overlay visualization of V𝑉 and V𝐸 . Suppose
that 𝑣1 is nearer to 𝑞 than 𝑣2. Then 𝑞 must be in the 𝑣1’s cell ofV𝑉 .

Under this circumstance, the closest line segment to 𝑞 may be 𝑒1 or
𝑒2 or 𝑒3. If 𝑣2 is nearer to 𝑞 than 𝑣1, instead, the closest line segment
may be 𝑒1 or 𝑒3. To summarize, 𝑣 is said to intercept an edge-type
primitive 𝑒 if and only if the following search space is non-empty:

Cell(𝑣 ;V𝑉 ) ∩ Cell(𝑒;V𝐸 ) ≠ ∅. (1)

We can also say that 𝑣 is an interceptor of 𝑒 if the interception occurs.
In this way, we obtain an interception table to keep the interception
relationship between 𝑉 and 𝐸; See Figure 2(d).

Roughly speaking, the KDT encodes how the mesh vertices are
positioned in the 3D space while the interception table encodes the
principal-agent relationship between a set of points and a set of
more complicated geometric primitives.

(a) (b)

Fig. 3. Given a mesh surface, the geometric primitives include the vertex
set 𝑉 , the edge set 𝐸 and the face set 𝐹 . By taking each edge and face
to be open (the endpoints or the boundary excluded), we precompute an
interception table to keep the clues of how 𝑉 is tied to 𝐸 and 𝐹 . (a) The
Voronoi diagram induced by 𝑉 , where only points are generators. (b) The
Voronoi diagram induced by 𝑉 , 𝐸, 𝐹 , where points, edges and faces are all
generators.

4 FORMULATION

4.1 Problem statement
Suppose that we have a collection of triangles 𝐹 = {𝑓𝑖 }𝑚𝑖=1. Rather
than simply take 𝐹 as a triangle soup, we assume that 𝐹 owns only
one copy for each vertex. Let 𝑉 and 𝐸 be respectively the vertex
set and the edge set. We take the vertex set 𝑉 as the generators to
define the Voronoi diagramV𝑉 while taking 𝑉 , 𝐸, 𝐹 as the genera-
tors simultaneously to define the Voronoi diagram V𝑉 ,𝐸,𝐹 , where
each edge/face is taken as an open point set (the endpoints or the
boundary excluded); See Figure 3 for illustration. Based on the ob-
servation in Section 3, the difference between V𝑉 and V𝑉 ,𝐸,𝐹 in-
duces the interception table, i.e., a vertex 𝑣 intercepts an edge-type
primitive 𝑒 if and only if the following search space is non-empty:

Cell(𝑣 ;V𝑉 ) ∩ Cell(𝑒;V𝑉 ,𝐸,𝐹 ) ≠ ∅. (2)

Similarly, 𝑣 intercepts a face-type primitive 𝑓 if and only if the in-
tersection is non-empty:

Cell(𝑣 ;V𝑉 ) ∩ Cell(𝑓 ;V𝑉 ,𝐸,𝐹 ) ≠ ∅. (3)

However, Cell(𝑒;V𝑉 ,𝐸,𝐹 ) and Cell(𝑓 ;V𝑉 ,𝐸,𝐹 ) may have a curved
boundary surface, making it non-trivial to determine whether the
intersection domain is empty, whichmotivates us to study the struc-
tural features of Cell(𝑒;V𝑉 ,𝐸,𝐹 ) and Cell(𝑓 ;V𝑉 ,𝐸,𝐹 ), and develop a
fast interception inspection algorithm.
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4.2 Structure of Cell(𝑒;V𝑉 ,𝐸,𝐹 ) and Cell(𝑓 ;V𝑉 ,𝐸,𝐹 )
Suppose that we have a triangle face 𝑓 ∈ 𝐹 . Then Cell(𝑓 ;V𝑉 ,𝐸,𝐹 )
contains all the points that are nearer to 𝑓 than to any other geo-
metric primitive. Recall that 𝑓 does not include its boundary edges.
If we project a point 𝑞 ∈ Cell(𝑓 ;V𝑉 ,𝐸,𝐹 ) onto the plane of 𝑓 , then
the projection 𝑞′ must be an interior point of 𝑓 , satisfying 𝑞𝑞′ ⊥ 𝑓 .
Therefore, we use the three bounding edges of 𝑓 to define three ver-
tical planes, and denote the space sandwiched by the three vertical
planes by Space⊥ (𝑓 ), as Figure 4(b) shows. Obviously, we have

Cell(𝑓 ;V𝑉 ,𝐸,𝐹 ) ⊂ Space⊥ (𝑓 ). (4)
For an edge 𝑒 , Space⊥ (𝑒) can be defined similarly. As Figure 4(a)
shows, the edge 𝑒 is adjacent to two faces, each of which defines a
half space. Also, there are two half planes rooted at the endpoints
of 𝑒 .The intersection domain by the four half spaces defines Space⊥ (𝑒).
Note that if 𝑒 is adjacent to more or less than two faces, Space⊥ (𝑒)
can also be well defined. Likewise, we have

Cell(𝑒;V𝑉 ,𝐸,𝐹 ) ⊂ Space⊥ (𝑒). (5)

(a) (b)

Fig. 4. Vertical space for an edge (a) and a face (b) respectively.

By combiningCell(𝑣 𝑗 ;V𝑉 ,𝐸,𝐹 ) ⊂ Cell(𝑣 𝑗 ;V𝑉 ) andCell(𝑣𝑖 ;V𝑉 )∩
Cell(𝑣 𝑗 ;V𝑉 ) = ∅, we have the following observation.
TheoRem 1. Suppose that 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 . Then we have

Cell(𝑣𝑖 ;V𝑉 ) ∩ Cell(𝑣 𝑗 ;V𝑉 ,𝐸,𝐹 ) = ∅.
Furthermore, as the cell of Cell(𝑣𝑖 ;V𝑉 ) encloses the vertex 𝑣𝑖 ∈

𝑉 , the intersection between Cell(𝑣𝑖 ;V𝑉 ) and every incident edge/-
face cannot be empty, which shows that 𝑣𝑖 must intercept the inci-
dent edges and faces.

TheoRem 2. Suppose that 𝑣𝑖 ∈ 𝑉 is a vertex.Then 𝑣𝑖 must intercept
the edges and the faces incident to 𝑣𝑖 .

It’s worth noting that Space⊥ (𝑒) and Space⊥ (𝑓 ) are convex poly-
hedral domains, which can be represented by a collection of linear
constraints.

4.3 Interception filtering
Suppose that 𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸, and we come to discuss in what situa-
tion 𝑣 intercepts 𝑒 . Let 𝑙𝑒 be the straight line of 𝑒 . If 𝑣 is an endpoint
of 𝑒 , then 𝑣 must be an interceptor of 𝑒 .
As Figure 5(a) shows, the point 𝑣 and the straight line 𝑙𝑒 deter-

mine a bisector surface that divides the whole space into two parts,
where the part containing 𝑣 is convex. We use Bisect𝑣 (𝑣, 𝑙𝑒 ) to de-
note the convex part containing 𝑣 while using Bisect𝑒 (𝑣, 𝑙𝑒 ) to de-
note the other part. The following theorem gives a situation that 𝑣
cannot intercept 𝑒; See Figure 6 for 2D illustration.

(a) (b)

Fig. 5. (a) The bisector surface between a point and a straight line. (b) The
bisector surface between a point and a plane. For both cases, the bisector
surface divides the whole space into a convex part and a non-convex part,
where the point lies in the convex part.

Fig. 6. Theorem 3 asserts that if the intersection domain Cell(𝑣;V𝑉 ) ∩
Space⊥ (𝑒) , colored in pink, belongs to Bisect𝑣 (𝑣, 𝑙𝑒 ) , then 𝑣 cannot inter-
cept 𝑒 .

TheoRem 3. If Cell(𝑣 ;V𝑉 ) ∩ Space⊥ (𝑒) ⊂ Bisect𝑣 (𝑣, 𝑙𝑒 ), then 𝑣
cannot intercept 𝑒 .

PRoof. If Cell(𝑣 ;V𝑉 ) does not intersect the vertical space of 𝑒 ,
i.e.,

Cell(𝑣 ;V𝑉 ) ∩ Space⊥ (𝑒) = ∅,
then we have

Cell(𝑣 ;V𝑉 ) ∩ Cell(𝑒;V𝑉 ,𝐸,𝐹 ) = ∅

due to
Cell(𝑒;V𝑉 ,𝐸,𝐹 ) ⊂ Space⊥ (𝑒) .

Otherwise, any point

𝑞 ∈ Cell(𝑣 ;V𝑉 ) ∩ Space⊥ (𝑒)

must belong to 𝑞 ∈ Bisect𝑣 (𝑣, 𝑙𝑒 ), which implies that 𝑞 is closer to 𝑣
than to 𝑙𝑒 .

Under the assumption that 𝑣 intercepts 𝑒 , there is at least one
point

𝑞′ ∈ Cell(𝑣 ;V𝑉 ) ∩ Cell(𝑒;V𝑉 ,𝐸,𝐹 ) ⊂ Cell(𝑣 ;V𝑉 ) ∩ Space⊥ (𝑒)

such that the projection 𝑞′′ of 𝑞′ onto 𝑙𝑒 is located between the
two endpoints of 𝑒 (see Eq. (5)). Furthermore, we have 𝑞′𝑞′′ ⊥ 𝑙𝑒
and ∥𝑞′𝑞′′∥ < ∥𝑞′𝑣 ∥, which contradicts the fact that any point in
Bisect𝑣 (𝑣, 𝑙𝑒 ) is closer to 𝑣 than to 𝑙𝑒 . □

Next, we come to discuss in what situation a vertex 𝑣 intercepts a
triangle 𝑓 . We suppose that the plane of 𝑓 is 𝜋𝑓 . The point 𝑣 and the
plane 𝜋𝑓 determine a bisector surface, as is shown in Figure 5(b).
It is easy to filter out the following interception case in a similar
inference procedure.
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TheoRem 4. If Cell(𝑣 ;V𝑉 ) ∩ Space⊥ (𝑓 ) ⊂ Bisect𝑣 (𝑣, 𝜋𝑓 ), then 𝑣
cannot intercept 𝑓 .

Remark. Cell(𝑣 ;V𝑉 ) is a convex polygonal space but may be un-
bounded. In practical occasions, we can assume that both the vertex
set and the query point are in a limited range, e.g.,

[−𝑀,𝑀] × [−𝑀,𝑀] × [−𝑀,𝑀], (6)

where𝑀 is a sufficiently large constant. We can add 8 virtual points
into 𝑉 , yielding 𝑉 :

𝑉 = 𝑉 ∪ (±3𝑀,±3𝑀,±3𝑀) . (7)

It can be proved that the nearest point to any query point 𝑞 in the
limited range can only be a point in 𝑉 , but not a virtual point. The
benefit of augmenting𝑉 to𝑉 is that in the Voronoi diagramV𝑉 , the
cell of each 𝑣 ∈ 𝑉 becomes bounded.Therefore, in what follows, we
take Cell(𝑣 ;V𝑉 ), as well as Cell(𝑣 ;V𝑉 )∩Space⊥ (𝑒) or Cell(𝑣 ;V𝑉 )∩
Space⊥ (𝑓 ), as a bounded convex polytope.

4.4 Convexity based filtering rule
Theorem 3 points out a situation of impossible interception, i.e., if
Cell(𝑣 ;V𝑉 ) ∩ Space⊥ (𝑒) ⊂ Bisect𝑣 (𝑣, 𝑙𝑒 ), then 𝑣 cannot intercept 𝑒 ,
where ConvexPoly(𝑣, 𝑒) ≜ Cell(𝑣 ;V𝑉 )∩Space⊥ (𝑒) defines a convex
and bounded polytope. Suppose that the polytope ofConvexPoly(𝑣, 𝑒)
has𝑘 extreme points {𝑥𝑖 }𝑘𝑖=1. Due to the convexity ofConvexPoly(𝑣, 𝑒)
and Bisect𝑣 (𝑣, 𝑙𝑒 ), the assertion of ConvexPoly(𝑣, 𝑒) ⊂ Bisect𝑣 (𝑣, 𝑙𝑒 )
is equivalent to

𝑥𝑖 ∈ Bisect𝑣 (𝑣, 𝑙𝑒 ), ∀𝑖 = 1, 2, · · · , 𝑘 . (8)

Based on the fact, we propose a convexity based filtering rule as
follows.

TheoRem 5. Weassume that ConvexPoly(𝑣, 𝑒) has𝑘 extreme points
{𝑥𝑖 }𝑘𝑖=1 to define the convex volume. If

∥𝑥𝑖 − 𝑣 ∥ ≤ Dist(𝑥𝑖 , 𝑙𝑒 ), ∀𝑖 = 1, 2, · · · , 𝑘, (9)

then 𝑣 cannot intercept 𝑒 , where Dist(𝑥𝑖 , 𝑙𝑒 ) denotes the distance be-
tween the point 𝑥𝑖 and the straight line 𝑙𝑒 .

TheoRem 6. Weassume that ConvexPoly(𝑣, 𝑓 ) has𝑘 extreme points
{𝑥𝑖 }𝑘𝑖=1 to define the convex volume. If

∥𝑥𝑖 − 𝑣 ∥ ≤ Dist(𝑥𝑖 , 𝜋𝑓 ), ∀𝑖 = 1, 2, · · · , 𝑘, (10)

then 𝑣 cannot intercept 𝑓 , where Dist(𝑥𝑖 , 𝜋𝑓 ) denotes the distance be-
tween the point 𝑥𝑖 and the plane 𝜋𝑓 .

Implementation. To this end, it is necessary to compute the con-
vex polytope ConvexPoly(𝑣, 𝑒) or ConvexPoly(𝑣, 𝑓 ) to facilitate in-
terception inspection. In fact, the operation of generating a convex
polytope by plane cutting is available in CGAL [CGAL 2022] or Ge-
ogram [Geogram 2020], but our scenario is specific since the num-
ber of half-planes is quite limited. Therefore, we implement plane
cutting by ourselves for consideration of run-time performance.
ConvexPoly(𝑣, 𝑒) (orConvexPoly(𝑣, 𝑓 )) is initialized to be 𝑣 ’s Voronoi

cell, i.e., Cell(𝑣 ;V𝑉 ). During the construction of ConvexPoly(𝑣, 𝑒),
the convex polytope is repeatedly cut by a sequence of half-planes.

For each corner of the convex
polytope, we keep the coordi-
nates, as well as the three half-
planes that define the corner.
For each edge of the convex
polytope, we keep the identities of the two endpoints. As the in-
set figure shows, when a new half-plane 𝜋 comes, we remove the
vertices and the edges lying on the invisible side of 𝜋 . If 𝜋 inter-
sects a surviving edge 𝑥1𝑥2 at a new point 𝑥 ′, then 𝑥 ′ defines a
new corner point and replaces the invisible endpoint of 𝑥1𝑥2 at the
same time. When all the half-planes are handled, the surviving ver-
tices {𝑥𝑖 }𝑘𝑖=1 are reported, facilitating the inspection of interception;
SeeTheorem 5 andTheorem 6. Statistics show that the average time
for computing ConvexPoly(𝑣, 𝑒) (or ConvexPoly(𝑣, 𝑓 )) is about 12
microseconds on the 20K-face Camel model, which is faster than
the implementation in CGAL.

4.5 Inspection in a flooding fashion

Algorithm 1: Flooding inspection of 𝑒’s interceptors
Input: 𝑒 = 𝑣1𝑣2 andV𝑉 .

1 Initialize an interceptor queue 𝑄 = {𝑣1, 𝑣2};
2 while 𝑄 is not empty do
3 Pop the front vertex 𝑣𝑖 ;
4 if 𝑣𝑖 intercepts 𝑒 then
5 Update the interception table by taking 𝑣𝑖 as the

interceptor of 𝑒;
6 for the neighboring generator 𝑣 𝑗 (referring toV𝑉 ) do
7 if 𝑣 𝑗 has not been in 𝑄 then
8 Push 𝑣 𝑗 into 𝑄 ;
9 end

10 end
11 end
12 end

Suppose that the Voronoi diagram V𝑉 of the vertex set 𝑉 has
been precomputed. Rather than exhaustively inspect the intercep-
tion between each vertex and each edge (or face), we propose to per-
form inspection in a flooding fashion. Initially, we build an empty
interception table T . For a mesh edge 𝑒 , we inspect the vertices in𝑉
from 𝑒’s endpoints in a flooding fashion, where the neighboring re-
lationship is defined byV𝑉 . Likewise, for each face 𝑓 , we perform
flooding inspection from the three vertices of 𝑓 . All the detected
interception pairs are kept in T . We summarize the flooding algo-
rithm for inspection of 𝑒’s interceptors in Algorithm 1. We give
a theorem on verifying the correctness of the flooding inspection
scheme without missing any interception.

TheoRem 7. The flooding strategy of Algorithm 1 ensures that all
the interception pairs can be found.

PRoof. Suppose that 𝑣 is an interceptor of 𝑒 = 𝑣1𝑣2. We come
to prove that 𝑣 must be found in the flooding process. Our proof is
based on the fact that Cell(𝑒;V𝑉 ,𝐸,𝐹 ) is a connected region, which
can be proved by contradiction (we ignore the proof). As 𝑣 is the
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Fig. 7. Proof of Theorem 7. Cell(𝑒 ;V𝑉 ,𝐸,𝐹 ) of 𝑒 = 𝑣1𝑣2 is colored in
aqua blue. Each of 𝑒’s interceptors can be found by the from-neighbor-to-
neighbor flooding scheme.

interceptor of 𝑒 = 𝑣1𝑣2, there must be at least one point, say, 𝑝 , such
that

𝑝 ∈ Cell(𝑣 ;V𝑉 ) ∩ Cell(𝑒;V𝑉 ,𝐸,𝐹 ) .
The connectedness of Cell(𝑒;V𝑉 ,𝐸,𝐹 ) implies that there is a path
Γ ∈ Cell(𝑒;V𝑉 ,𝐸,𝐹 ) between 𝑣1 and 𝑝 such that Γ\𝑣1 is totally in-
side Cell(𝑒;V𝑉 ,𝐸,𝐹 ). Suppose that Γ crosses a sequence of Voronoi
cells in V𝑉 , denoted by C. It is easy to verify the following two
facts. First, 𝑣1 is a natural interceptor of 𝑒 . Second, every Voronoi
cell that has intersections with Γ gives an interceptor for 𝑒 . There-
fore, we can take 𝑣1 as the first interceptor, and then trace the other
interceptors along C until 𝑣 is found. □

4.6 Further optimization in the query phase
In the query stage, we first find the nearest vertex 𝑣 by KDT search,
followed by looking up the interception table. A naïve strategy is to
enumerate all the primitives in the interception table to identify the
one that is closest to the query point𝑞. However, the query becomes
inefficient when the interception table is very long. Recall that an
edge 𝑒 is said to be intercepted by 𝑣 ifCell(𝑣 ;V𝑉 )∩Cell(𝑒;V𝑉 ,𝐸,𝐹 ) ≠
∅, regardless of the location of the specific query point 𝑞.

Fig. 8. An illustration of Region(𝑣, 𝑒) (colored in aqua blue) as well as its
bounding box (colored in red).

Based on the discussion in Section 4.3, the assertionCell(𝑣 ;V𝑉 )∩
Cell(𝑒;V𝑉 ,𝐸,𝐹 ) ≠ ∅ can be relaxed to

ConvexPoly(𝑣, 𝑒) ∩ Bisect𝑒 (𝑣, 𝑙𝑒 ) ≠ ∅;
See Figure 8.We denoteConvexPoly(𝑣, 𝑒)∩Bisect𝑒 (𝑣, 𝑙𝑒 ) by Region(𝑣, 𝑒).
To this end, whether the edge 𝑒 contributes to the minimum dis-
tance can be reduced to check if 𝑞 is located in Region(𝑣, 𝑒). How-
ever, Region(𝑣, 𝑒) is generally non-convex, making it difficult to per-
form the inside-outside test. Therefore, for each edge 𝑒 (resp., face

𝑓 ) in the interception list of 𝑣 , we suggest enclosing Region(𝑣, 𝑒)
(resp., Region(𝑣, 𝑓 )) by its bounding box and then organizing the
bounding boxes into an R-tree, finally producing one R-tree per in-
terception list.

Besides, when determining whether a primitive, say, 𝑒 (resp., 𝑓 ),
can provide the minimum distance, we first check whether 𝑞 ∈
Space⊥ (𝑒) (resp., 𝑞 ∈ Space⊥ (𝑓 )) or not. Only when the assertion is
true, we come to calculate the distance from 𝑞 to the straight line
of 𝑒 (resp., the plane of 𝑓 ).

To summarize, after the nearest vertex 𝑣 is found by KDT search,
the geometric primitives are further filtered out by R-tree. For the
surviving geometric primitives, we conduct an exhaustive compar-
ison to accomplish the point-to-mesh distance query.

5 EVALUATION
We conducted experiments on a PC with AMD Ryzen 9 5950X 16-
core processor. Our implementation is written in C++. We call Tet-
Gen (version 1.6.0) [Si 2015] to compute the Voronoi diagramw.r.t. the
vertex set 𝑉 . We first give the performance statistics of the pro-
posed algorithm. After that, we compare our algorithm with PQP1
and FCPW in terms of various indicators. Note that FCPW supports
SIMD parallelism and we set the CPU based SIMDwidth to 4 in our
experiments. There is no parallelism in PQP and our code. For each
test model, we randomly sample a million query points within the
10x axis-aligned bounding box.

Fig. 9. Different vertices have different numbers of intercepted primitives.
We visualize the vertices in varying colors according to the length of inter-
ception list. We set the vertical axis to be in a logarithmic scale. The vertex
colored in red owns a long interception list.

1The modified PQP version includes a direct interface for point-to-mesh dis-
tance queries, and the code is available at https://mewangcl.github.io/Projects/
MeshThickeningProj.htm.
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5.1 Interception list
Length of the interception list for a vertex. Recall that in the in-

terception table, we keep the intercepted geometric primitives, i.e.,
edges and faces, for each vertex in𝑉 . As different vertices have dif-
ferent numbers of intercepted primitives, we take the 1500K-face
Dragon model as the input, shown in Figure 9, to observe how the
length of the interception list of a vertex varies with the position
on the surface (the horizontal axis: the length of the interception
list; the vertical axis: the number of vertices). It can be seen that
for most of the vertices, the length of the interception list of a ver-
tex ranges from 20 to 100. The average length for this example is
about 41. However, there is an occurrence that the interception list
is very long. In Figure 9, the vertex colored with a red dot keeps 782
intercepted primitives. Once the vertex is retrieved by the KDT, it
is time-consuming to exhaust every intercepted primitive in its in-
terception list. That’s why we introduce an R-tree based filtering
method (see Section 4.6) to reduce the number of candidate primi-
tives.
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Fig. 10. The maximum and average number of intercepted primitives of a
vertex w.r.t. the mesh resolution of the Dragon model.

We simplify the Dragon model into 100K, 200K, · · · , 1500K faces
respectively and then record the average and maximum number
of the intercepted primitives for a vertex. Statistics in Figure 10
show that the average length of interception list remains nearly un-
changed with the increase of mesh resolution, but there is a slight
rise in the maximum length.

Number of tested primitives. Wemust point out that different ver-
tices have different chances of being accessed, depending on the
size of the Voronoi cell Cell(𝑣 ;V𝑉 ). Therefore, we take the size of
Cell(𝑣 ;V𝑉 ) to weigh 𝑣 ’s access chance. As Table 1 shows, the size-
weighted average number (Avg2) is slightly different from the non-
weighted average number (Avg1).

Recall that we propose an R-tree based filtering technique to fil-
ter out most of the primitives that do not help. It can be seen from
the right side of Table 1 that both the average and maximum num-
bers of tested primitives, for each query, are significantly reduced.
To summarize, the filtering technique is helpful in improving the

Table 1. The average (Avg1), size-weighted average (Avg2) and maximum
numbers of intercepted primitives on 5 models, where “size-weighted”
means that an interception list is weighed by the volume of the Voronoi cell
of its interceptor vertex. The average and maximum numbers of tests for
one query operation is also reported. Note that we use two sets of numbers
for each cell to indicate respectively the number of edges and the number
of faces.

Intercepted (edges, faces) Tested (edges, faces)
Model Faces Avg1 Avg2 Max Avg Max
Camel 19510 18.0, 26.3 15.0, 17.2 105, 130 5.5, 2.7 12, 12

Armadillo 99976 19.0, 23.6 17.1, 20.7 81, 91 4.7, 1.9 13, 13
Sponza 262196 21.4, 26.8 34.8, 29.4 296, 168 0.4, 0.1 23, 28
Lucy 525814 18.3, 23.7 23.1, 22.6 346, 232 4.3, 1.6 14, 9

Dragon 1499852 19.2, 21.7 16.6, 19.2 434, 425 5.1, 2.0 13, 13

overall performance, especially when there exist long interception
lists. A more detailed discussion about the speed-up gain in the
query performance by R-tree can be found in Section 5.3.

5.2 Preprocessing cost
Cost breakdown. The overall preprocessing cost consists of four

parts, i.e., 1) KDT construction, 2) Voronoi diagram generation,
3) flood-based interception inspection and 4) R-tree construction.
The cost breakdown generalizes to the 5 models (see Table 2) as
well as other tested models in large datasets.

It can be seen that the computation of the interception table takes
about 90% of the total preprocessing time. Despite this, the flood-
ing scheme is still very helpful. If we inspect interception without
flooding scheme, which requires to test every vertex-edge pair and
every vertex-face pair, this brute-force manner requires more than
24 hours to accomplish the task on the 1500K-face Dragon model.
The cost of interception inspection is reduced to 2 minutes with the
help of the flooding scheme.

Table 2. The computational time consumption and corresponding propor-
tion about KDT construction, Voronoi diagram generation, interception in-
spection and R-tree construction in preprocessing procedure.

KDT
construction

Voronoi
diagram

Interception
inspection

R-tree
construction

Model T(𝑚𝑠) Prop. T(𝑚𝑠) Prop. T(𝑚𝑠) Prop. T(𝑚𝑠) Prop.
Camel 1.9 0.2% 105.4 10.6% 854.2 85.7% 17.1 1.7%

Armadillo 9.4 0.2% 718.8 15.0% 3847.5 80.4% 65.3 1.4%
Sponza 24.9 0.2% 1936.2 12.3% 13245.3 84.3% 232.1 1.5%
Lucy 53.1 0.2% 4100.0 16.6% 19436.6 78.9% 413.2 1.7%

Dragon 154.5 0.2% 12163.0 12.6% 80596.8 83.7% 1093.9 1.1%

In Figure 11, we give the statistics about the preprocessing time
on the Dragonmodel with varying resolutions. Although theworst-
case theoretical time complexity of flooding is𝑂 (𝑛𝑚) (𝑛 is the num-
ber of vertices and 𝑚 is the total number of edges and faces), the
empirical time complexity is quasilinear w.r.t. 𝑛. Furthermore, it
can be seen from Figure 12 that the average number of examined
vertices during flooding remains almost unchanged while the max-
imum number has a slight rise.

Comparisonwith existing libraries. Our algorithm requires amuch
larger preprocessing cost than PQP and FCPW. For example, PQP
and FCPW take about 4.0 seconds and 1.9 seconds respectively to
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Fig. 11. The preprocessing cost on the Dragon model with varying reso-
lutions. Top: our preprocessing cost v.s. the mesh resolution. Bottom: the
comparison about the preprocessing cost among PQP, FCPW and ours.
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Fig. 12. The average and maximum numbers of examined vertices when
flooding from an edge or a face. The tests are made on the Dragon model
with different resolutions.

construct the BVH, but our algorithm requires 137.4 seconds for
preprocessing the 1500K-face Dragon model. By using the Dragon
model as the test, we provide the comparison about the preprocess-
ing cost among PQP, FCPW and ours in Figure 11. We further com-
pare them on theThingi10K dataset; See the statistics of the prepro-
cessing costs in Figure 20.

5.3 Query performance
Cost breakdown. The query stage of our algorithm involves two

operations: (1) finding the nearest vertex 𝑣 by KDT search, and
(2) identifying the closest geometric primitive by visiting 𝑣 ’s in-
terception list. The average timing costs of the two parts on the
1500K-face Dragon model are respectively 2.83 microseconds and
0.39 microseconds.We further plot the cost breakdown in Figure 13.
It can be seen that KDT search takes over half of the total query

time, which shows the effectiveness of our R-tree based filtering
rule.
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Fig. 13. Cost breakdown of query performance on 5 models.

Likewise, we plot the average query cost w.r.t. mesh resolution
of the Dragon model in Figure 14. It can be seen that our average
query cost climbs gently with the increasing number of faces. In
Figure 15, we further provide the average and maximum numbers
of examined tree nodes during KDT search.
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Comparison with existing libraries. Figure 14 gives a plot for vi-
sualizing the comparison about the query cost among PQP, FCPW
and ours. It can be seen that our algorithm runs at least 4 times as
fast as PQP and 2 times faster than FCPW even on the model with
1500K faces, which shows that our algorithm has a better query
performance, especially on large-sized 3D models. Figure 21 gives
more comprehensive statistics about the query performance.
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Fig. 16. Query performance w.r.t. the size of sampling box of query points
on the Dragon model. (log-log plot)

Near and far query points. It is necessary to make clear how
the query performance depends on the distance between the query
point and the surface. In Figure 16, we plot the dependence of PQP’s,
FCPW’s and our query performance on the distance, where the hor-
izontal axis indicates the ratio of the maximum side length of sam-
pling box to that of the minimum bounding box. It can be seen that,
like PQP and FCPW, our query becomes more time-efficient with
the increasing distance between the query point and the surface.

Thread-based parallelism. We perform thread-based parallelism
tests, which simply divides independent queries into groups and
distribute them to separate threads. As Figure 17 shows, our algo-
rithm runsmuch faster than PQP and FCPWunder the same thread-
based parallelism and the parallel performance is close to linear.
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Fig. 17. Comparison about average timing cost among PQP, FCPW and
our algorithm under multi-thread parallelism. (log-log plot)

Speed-up gain of R-tree. The use of R-tree does help when the in-
terception list is very long. Compared with the brute-force strategy
of testing all primitives in the interception list to find the closest
point, the R-tree-based method can effectively filter out unneces-
sary primitives. Table 3 shows some examples. For general models

without long interception lists, such as Camel and Armadillo, the
filtering effect of R-tree is not significant.

Table 3. Comparison about the query cost among PQP (𝑇𝑃𝑄𝑃 ), FCPW
(𝑇𝐹𝐶𝑃𝑊 ) and our approaches with (𝑇𝑅 ) or without the use of R-tree (𝑇𝐵𝐹 ).
The experiments are conducted on totally 10 models, where the last 5 mod-
els, selected from the Thingi10K dataset, have long interception lists. Avg1

and Avg2 indicate the average and size-weighted average numbers of inter-
cepted primitives respectively. The speed-up gain of R-tree is conspicuous
for models with long interception lists.

Tested (edges, faces)

Model Avg1 Avg2 𝑇𝑃𝑄𝑃 (𝜇𝑠) 𝑇𝐹𝐶𝑃𝑊 (𝜇𝑠) 𝑇𝐵𝐹 (𝜇𝑠) 𝑇𝑅 (𝜇𝑠) 𝑇𝐵𝐹
𝑇𝑅

Camel 15.0, 17.2 5.5, 2.7 7.47 3.64 1.43 1.28 1.12
Armadillo 17.1, 20.7 4.7, 1.9 9.64 5.43 2.45 2.19 1.11
Sponza 34.8, 29.4 0.4, 0.1 7.69 0.79 0.57 0.41 1.36
Lucy 23.1, 22.6 4.3, 1.6 11.84 5.43 2.44 2.13 1.14

Dragon 16.6, 19.2 5.1, 2.0 13.83 7.56 3.54 3.34 1.06
#378036 383.5, 385.7 6.8, 2.6 37.27 20.04 15.77 7.60 2.07
#69078 356.5, 4981.7 5.2, 6.2 9.45 6.79 60.54 3.43 17.66
#82324 743.6, 817.3 1.5, 0.8 5.18 1.12 13.43 0.54 25.06
#1472696 2646.6 1971.6 0.4, 0.1 6.94 0.51 30.51 0.47 64.97
#236143 2125.6, 1533.5 0.2, 0.1 5.61 0.79 37.51 0.37 100.75

5.4 Memory usage
The memory requirements consist of four parts, i.e., 1) KDT struc-
ture, 2) geometric information of primitives, 3) interception lists
and 4) R-tree structures. For the Dragon model, the four parts of
memory usage are respectively 2%, 10%, 67% and 21%. The propor-
tions are similar for a general input model. In contrast, our mem-
ory consumption is generally larger than PQP and FCPW. Taking
the Dragon model for an example, PQP and FCPW require 0.61 GB
and 0.16 GB of memory, respectively, while ours requires 1.78 GB.
It is necessary to mention that FCPW uses single-precision vari-
ables while PQP and ours use double-precision variables. We give
comprehensive statistics of memory consumption in Figure 22 on
Thingi10K.

(a) Bad triangulation (b) Good triangulation

Fig. 18. TheWater-Bottle model has 49,974 triangles. (a) Low-quality mesh
withmany long skinny triangles. (b) High-qualitymeshwith the same num-
ber of triangle facets.

5.5 Extreme tests
Poor triangulation quality. Generally speaking, irregularly shaped

triangle faces would cause difficulties in the node splitting proce-
dure of BVH structure generation and affect the performance of
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Table 4. Each of the six models has a low-quality triangle mesh as well as
a high-quality counterpart. We list the query performance of PQP, FCPW
and ours on these test models.

Model
Tri Quality Bad-tri percent PQP query (𝜇s) FCPW query (𝜇s) Our query (𝜇s)
low high low high low high low high low high

0.387 0.755 32.96% 0.13% 13.12 9.41 6.14 3.68 1.61 1.31

0.344 0.603 44.47% 7.02% 15.20 6.98 4.44 3.52 1.42 1.18

0.598 0.763 7.52% 0.50% 6.50 6.52 2.16 2.02 0.66 0.65

0.061 0.704 87.75% 1.28% 7.53 7.21 0.76 0.83 0.31 0.31

0.286 0.756 59.19% 3.29% 15.98 8.66 3.68 5.22 1.05 1.95

0.292 0.621 58.39% 3.17% 24.96 15.02 11.24 5.54 2.72 1.66

closest point query. It is necessary to observe if poor triangula-
tion slows down the query performance of our algorithm.We select
six poorly-triangulated models from the Thingi10K dataset and for
each of them, we use themesh optimization tool [Hoppe et al. 1993]
to get a high-quality counterpart with the same number of triangles.
The quality of a triangle 𝑡 can be measured by

𝑄 (𝑡) = 6
√
3

𝑆𝑡
𝑝𝑡ℎ𝑡

,

where 𝑆𝑡 , 𝑝𝑡 , ℎ𝑡 are respectively the area, the half-perimeter of tri-
angle and the longest edge length. 𝑄 (𝑡) ranges from 0 to 1, and
equals 1 when 𝑡 is a regular triangle. Table 4 gives the overall tri-
angle quality as well as the ratio of bad triangles. Here a triangle
is considered to “bad” if the minimum angle is less than 10 degrees.
Statistics show that our query performance does not have a con-
spicuous drop when the triangulation quality is diminished. Tak-
ing the Water-Bottle model (as shown in Figure 18) for an example,
our average query cost is 1.95𝜇s on the high-quality model while
the query cost becomes 1.05𝜇s on the poorly-triangulated model.
In contrast, PQP is sensitive to triangle quality, and the query cost
increases from 8.66𝜇s to 15.98𝜇s when the triangulation quality is
diminished. It shows that our query algorithm is less sensitive to
triangle quality than BVH.

Triangle soup. Figure 19 shows three versions of the 20K-face
Bear model, i.e., watertight triangle mesh, gapped triangles and a
triangle soup with high penetration. The statistics of query speed
are available in Figure 19. For the watertight Bear model, our query
algorithm runs about 5 times as fast as PQP, and 3 times as fast as
FCPW. Figure 19(b) and Figure 19(c) show that the comparative ad-
vantage over them becomes smaller for gapped triangles whereas
becomes larger in the presence of high penetration.

Mixed primitives. We make tests on a mixed set of segments and
triangles. By combining the triangular mesh of Armadillo model
and the wireframe of Camel model, we synthesize a mixed set of
geometric primitives. Experimental results show that our algorithm
is 3.8 times as fast as FCPW (PQP does not support this kind of
input).

(a) (b) (c)

Fig. 19. Test PQP, FCPW and ours on the Bear model with watertight/bro-
ken triangulation. (a) Watertight triangulation. (b) Triangle soup with
gapped triangles. (c) Triangle soup with high penetration. Our comparative
advantage over BVH-based methods becomes smaller for a set of gapped
triangles whereas larger in the presence of high penetration.

5.6 Tests on Thingi10K
Thingi10K [Zhou and Jacobson 2016] is a large scale 3D dataset that
contains diverse models. In order to make a comprehensive com-
parison among PQP, FCPW and our algorithm, we run them on
the full Thingi10K dataset to compare the preprocessing cost (see
Figure 20), the query cost (see Figure 21) and the memory require-
ments (see Figure 22). Based on the statistics, we observe that our
algorithm achieves a higher query performance at the cost of pre-
processing and memory usage. Generally speaking, our algorithm
runs 2 to 10 times faster than PQP and FCPW.
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Fig. 20. Comparison of preprocessing cost among PQP, FCPW and our al-
gorithm on the full Thingi10K dataset. (log-log plot)
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Fig. 21. Comparison of query time among PQP, FCPW and our algorithm
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Fig. 22. Comparison of memory usage among PQP, FCPW and our algo-
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6 CONCLUSION AND LIMITATIONS
In this paper, we develop a novel algorithmic paradigm, named
P2M, to solve the problem of point-to-mesh distance query. P2M
needs to precompute a pair of data structures including a KDT of

mesh vertices and an interception table that encodes the principal-
agent relationship between vertices and edges/faces, such that the
query stage proceeds by first searching the KDT and then looking
up the interception table to retrieve the closest geometric primi-
tive. We give rigorous proofs about the correctness and propose a
set of strategies for speeding up the preprocessing stage and the
query stage. We conduct extensive experiments to evaluate our ap-
proach. Experimental results show that our algorithm runs many
times faster than the SOTAs.

However, in its current state, our algorithm still needs compre-
hensive improvement. First, the construction of the interception ta-
ble is still time-consuming. Statistics show that in the time-consuming
interception inspection phase, about 85% of visited vertices are checked
but found not to be an interceptor during flooding. One potential
research direction is to quickly exclude the non-interceptor ver-
tices by some filtering techniques. Second, the interception table be-
comes very long for a highly symmetrical shape. For example, if the
input is a spherical surface, then each vertex intercepts any triangle.
Last but not least, PQP supports closest point query, line-surface
intersection and collision detection at the same time, but our al-
gorithm only supports closest point query. In the future, we shall
further improve the algorithm in terms of the above-mentioned as-
pects.
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A COMPLETE PSEUDOCODE

Algorithm A.1: Preprocess.

1 I npu t : v e r t i c e s 𝑉 , edges 𝐸 , t r i a n g u l a r f a c e s 𝐹
2 Output : v e r t i c a l space 𝑆𝑝𝑎𝑐𝑒⊥ o f 𝐸 and 𝐹 , KD t r e e o f v e r t i c e s 𝐾𝐷𝑇 , i n t e r c e p t i o n t a b l e 𝐼𝑇 , a s e t o f R− t r e e s 𝑅𝑇
3 begin
4 foreach 𝑓 ∈ 𝐹
5 foreach bounding edge 𝑒 o f 𝑓
6 Compute the equa t i on o f the v e r t i c a l p l ane 𝜋 d e f i n e d by 𝑒 and 𝑓 ;
7 Record the two h a l f s p a c e s d i v i d e d by 𝜋 i n t o 𝑆𝑝𝑎𝑐𝑒⊥ (𝑒) and 𝑆𝑝𝑎𝑐𝑒⊥ (𝑓 ) r e s p e c t i v e l y ;
8 end
9 end
10 foreach 𝑒 ∈ 𝐸
11 Compute the e qua t i on s o f two v e r t i c a l p l an e s r oo t ed a t the endpo in t s o f 𝑒 ;
12 Record the two h a l f s p a c e s d e f i n e d by the two p l an e s i n t o 𝑆𝑝𝑎𝑐𝑒⊥ (𝑒) ;
13 end
14 Compute Voronoi diagram of 𝑉 ;
15 Compute 𝐾𝐷𝑇 o f 𝑉 ;
16 foreach 𝑒 ∈ 𝐸
17 I n s p e c t the v e r t i c e s in 𝑉 from 𝑒 ’ s endpo in t s in a f l o o d i n g f a s h i o n and add 𝑒 ’ s i n t e r c e p t o r s i n t o the i n t e r c e p t i o n t a b l e 𝐼𝑇 ;
18 foreach 𝑒 ’ s i n t e r c e p t o r 𝑣
19 Ca l c u l a t e the bounding box o f Region(𝑣, 𝑒) ;
20 end
21 end
22 foreach 𝑓 ∈ 𝐹
23 I n s p e c t the v e r t i c e s in 𝑉 from the t h r e e v e r t i c e s o f 𝑓 i n a f l o o d i n g f a s h i o n and add 𝑓 ’ s i n t e r c e p t o r s i n t o the i n t e r c e p t i o n

t a b l e 𝐼𝑇 ;
24 foreach 𝑓 ’ s i n t e r c e p t o r 𝑣
25 Ca l c u l a t e the bounding box o f Region(𝑣, 𝑓 ) ;
26 end
27 end
28 foreach 𝑣 ∈ 𝑉
29 Organ ize the bounding boxes o f the p r im i t i v e s i n t e r c e p t e d by 𝑣 i n t o an R− t r e e ;
30 end
31 end

Algorithm A.2: Query.

1 I npu t : query po i n t 𝑝 , KD t r e e o f v e r t i c e s 𝐾𝐷𝑇 , i n t e r c e p t i o n t a b l e 𝐼𝑇 , c o r r e spond ing R− t r e e s 𝑅𝑇
2 Output : d i s t a n c e 𝑑𝑚𝑖𝑛 from 𝑝 t o mesh s u r f a c e
3 begin
4 F ind the c l o s e s t v e r t e x 𝑣 t o 𝑝 by 𝐾𝐷𝑇 ;
5 Search the R− t r e e o f 𝑣 and r e co rd the i n t e r c e p t e d p r im i t i v e s whose co r r e spond ing bounding box c on t a i n s 𝑝 ;
6 𝑑𝑚𝑖𝑛 ← 𝑑 (𝑝, 𝑣) ;
7 foreach r e co rded p r im i t i v e
8 i f i t i s an edge 𝑒
9 i f 𝑝 i s i n s i d e o f the two v e r t i c a l p l an e s r oo t ed a t the endpo in t s o f 𝑒
10 s e t 𝑑 as the d i s t a n c e between 𝑝 and the s t r a i g h t l i n e o f 𝑒
11 end
12 end
13 i f i t i s a f a c e 𝑓
14 i f 𝑝 ∈ 𝑆𝑝𝑎𝑐𝑒⊥ (𝑓 )
15 s e t 𝑑 as the d i s t a n c e between 𝑝 and the p l ane o f 𝑓
16 end
17 end
18 𝑑𝑚𝑖𝑛 ← 𝑀𝐼𝑁 (𝑑𝑚𝑖𝑛 , 𝑑)
19 end
20 end
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